A Fast and Accurate Sparse Continuous Signal Reconstruction by Homotopy DCD with Non-Convex Regularization

نویسندگان

  • Tianyun Wang
  • Xinfei Lu
  • Xiaofei Yu
  • Zhendong Xi
  • Weidong Chen
چکیده

In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction

Compressive sensing theory has attracted widespread attention in recent years and sparse signal reconstruction has been widely used in signal processing and communication. This paper addresses the problem of sparse signal recovery especially with non-Gaussian noise. The main contribution of this paper is the proposal of an algorithm where the negentropy and reweighted schemes represent the core...

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations

The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However...

متن کامل

Non-quadratic convex regularized reconstruction of MR images from spiral acquisitions

Combining fast MR acquisition sequences and high resolution imaging is a major issue in dynamic imaging. Reducing the acquisition time can be achieved by using non-Cartesian and sparse acquisitions. The reconstruction of MR images from these measurements is generally carried out using gridding that interpolates the missing data to obtain a dense Cartesian k-space filling. The MR image is then r...

متن کامل

Projected Nesterov's Proximal-Gradient Algorithm for Sparse Signal Recovery

We develop a projected Nesterov’s proximal-gradient (PNPG) approach for sparse signal reconstruction that combines adaptive step size with Nesterov’s momentum acceleration. The objective function that we wish to minimize is the sum of a convex differentiable data-fidelity (negative log-likelihood (NLL)) term and a convex regularization term. We apply sparse signal regularization where the signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014